skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Narang, Mayank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Asymmetric and narrow infalling structures, often called streamers, have been observed in several Class 0/I protostars, which is not expected in the classical star formation picture. Their origin and impact on the disk formation remain observationally unclear. By combining data from the James Clerk Maxwell Telescope (JCMT) and Atacama Large Millimeter/submillimeter Array (ALMA), we investigate the physical properties of the streamers and parental dense core in the Class 0 protostar, IRAS 16544–1604. Three prominent streamers associated to the disk with lengths between 2800 and 5800 au are identified on the northern side of the protostar in the C18O emission. Their mass and mass infalling rates are estimated to be in the range of (1–4) × 10−3Mand (1–5) × 10−8Myr−1, respectively. Infall signatures are also observed in the more diffuse extended protostellar envelope observed with the ALMA from the comparison to the infalling and rotating envelope model. The parental dense core detected by the JCMT observation has a mass of ∼0.5M, a subsonic to transonic turbulence of M  =  0.8–1.1, and a mass-to-flux ratio of 2–6. Our results show that the streamers in IRAS 16544–1604 only possess 2% of the entire dense core mass and contribute less than 10% of the mass infalling rate of the protostellar envelope. Therefore, the streamers in IRAS 16544–1604 play a minor role in the mass accretion process onto the disk, in contrast to those streamers observed in other sources and those formed in numerical simulations of collapsing dense cores with similar turbulence and magnetic field strengths. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  2. Abstract The magnetic field of a molecular cloud core may play a role in the formation of circumstellar disks in the core. We present magnetic field morphologies in protostellar cores of 16 targets in the Atacama Large Millimeter/submillimeter Array large program “Early Planet Formation in Embedded Disks (eDisk),” which resolved their disks with 7 au resolutions. The 0.1 pc scale magnetic field morphologies were inferred from the James Clerk Maxwell Telescope POL-2 observations. The mean orientations and angular dispersions of the magnetic fields in the dense cores are measured and compared with the radii of the 1.3 mm continuum disks and the dynamically determined protostellar masses from the eDisk program. We observe a significant correlation between the disk radii and the stellar masses. We do not find any statistically significant dependence of the disk radii on the projected misalignment angles between the rotational axes of the disks and the magnetic fields in the dense cores, nor on the angular dispersions of the magnetic fields within these cores. However, when considering the projection effect, we cannot rule out a positive correlation between disk radii and misalignment angles in three-dimensional space. Our results suggest that the morphologies of magnetic fields in dense cores do not play a dominant role in the disk formation process. Instead, the sizes of protostellar disks may be more strongly affected by the amount of mass that has been accreted onto star+disk systems, and possibly other parameters, for example, magnetic field strength, core rotation, and magnetic diffusivity. 
    more » « less
  3. Abstract We present a Spitzer/Herschel focused survey of the Aquila molecular clouds ( d ∼ 436 pc) as part of the eHOPS (extension of the Herschel orion protostar survey, or HOPS, Out to 500 ParSecs) census of nearby protostars. For every source detected in the Herschel/PACS bands, the eHOPS-Aquila catalog contains 1–850 μ m SEDs assembled from the Two Micron All Sky Survey, Spitzer, Herschel, the Wide-field Infrared Survey Explorer, and James Clerk Maxwell Telescope/SCUBA-2 data. Using a newly developed set of criteria, we classify objects by their SEDs as protostars, pre-main-sequence stars with disks, and galaxies. A total of 172 protostars are found in Aquila, tightly concentrated in the molecular filaments that thread the clouds. Of these, 71 (42%) are Class 0 protostars, 54 (31%) are Class I protostars, 43 (25%) are flat-spectrum protostars, and four (2%) are Class II sources. Ten of the Class 0 protostars are young PACS bright red sources similar to those discovered in Orion. We compare the SEDs to a grid of radiative transfer models to constrain the luminosities, envelope densities, and envelope masses of the protostars. A comparison of the eHOPS-Aquila to the HOPS protostars in Orion finds that the protostellar luminosity functions in the two star-forming regions are statistically indistinguishable, the bolometric temperatures/envelope masses of eHOPS-Aquila protostars are shifted to cooler temperatures/higher masses, and the eHOPS-Aquila protostars do not show the decline in luminosity with evolution found in Orion. We briefly discuss whether these differences are due to biases between the samples, diverging star formation histories, or the influence of environment on protostellar evolution. 
    more » « less